diff_classifier.msd
¶
diff_classifier.msd
¶
Functions to calculate mean squared displacements from trajectory data
This module includes functions to calculate mean squared displacements and additional measures from input trajectory datasets as calculated by the Trackmate ImageJ plugin.
-
diff_classifier.msd.
all_msds
(data)[source]¶ Calculates mean squared displacements of a trajectory dataset
Returns numpy array containing MSD data of all tracks in a trajectory pandas dataframe.
Parameters: - data : pandas.core.frame.DataFrame
Contains, at a minimum a ‘Frame’, ‘Track_ID’, ‘X’, and ‘Y’ column. Note: it is assumed that frames begins at 1, not 0 with this function. Adjust before feeding into function.
Returns: - new_data : pandas.core.frame.DataFrame
Similar to input data. All missing frames of individual trajectories are filled in with NaNs, and two new columns, MSDs and Gauss are added: MSDs, calculated mean squared displacements using the formula MSD = <(xpos-x0)**2> Gauss, calculated Gaussianity
Examples
>>> data1 = {'Frame': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5], ... 'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], ... 'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], ... 'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6]} >>> df = pd.DataFrame(data=data1) >>> all_msds(df)
-
diff_classifier.msd.
all_msds2
(data, frames=651)[source]¶ Calculates mean squared displacements of input trajectory dataset
Returns numpy array containing MSD data of all tracks in a trajectory pandas dataframe.
Parameters: - data : pandas.core.frame.DataFrame
Contains, at a minimum a ‘Frame’, ‘Track_ID’, ‘X’, and ‘Y’ column. Note: it is assumed that frames begins at 0.
Returns: - new_data : pandas.core.frame.DataFrame
Similar to input data. All missing frames of individual trajectories are filled in with NaNs, and two new columns, MSDs and Gauss are added: MSDs, calculated mean squared displacements using the formula MSD = <(xpos-x0)**2> Gauss, calculated Gaussianity
Examples
>>> data1 = {'Frame': [0, 1, 2, 3, 4, 0, 1, 2, 3, 4], ... 'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], ... 'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], ... 'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6]} >>> df = pd.DataFrame(data=data1) >>> cols = ['Frame', 'Track_ID', 'X', 'Y', 'MSDs', 'Gauss'] >>> om flength = max(df['Frame']) + 1 >>> msd.all_msds2(df, frames=length)[cols]
-
diff_classifier.msd.
binning
(experiments, wells=4, prefix='test')[source]¶ Split set of input experiments into groups.
Parameters: - experiments : list of str
List of experiment names.
- wells : int
Number of groups to divide experiments into.
Returns: - slices : int
Number of experiments per group.
- bins : dict of list of str
Dictionary, keys corresponding to group names, and elements containing lists of experiments in each group.
- bin_names : list of str
List of group names
-
diff_classifier.msd.
geomean_msdisp
(prefix, umppx=0.16, fps=100.02, upload=True, remote_folder='01_18_Experiment', bucket='ccurtis.data', backup_frames=651)[source]¶ Comptes geometric averages of mean squared displacement datasets
Calculates geometric averages and stadard errors for MSD datasets. Might error out if not formatted as output from all_msds2.
Parameters: - prefix : string
Prefix of file name to be plotted e.g. features_P1.csv prefix is P1.
- umppx : float
Microns per pixel of original images.
- fps : float
Frames per second of video.
- upload : bool
True if you want to upload to s3.
- remote_folder : string
Folder in S3 bucket to upload to.
- bucket : string
Name of S3 bucket to upload to.
Returns: - geo_mean : numpy.ndarray
Geometric mean of trajectory MSDs at all time points.
- geo_stder : numpy.ndarray
Geometric standard errot of trajectory MSDs at all time points.
-
diff_classifier.msd.
make_xyarray
(data, length=651)[source]¶ Rearranges xy position data into 2d arrays
Rearranges xy data from input pandas dataframe into 2D numpy array.
Parameters: - data : pd.core.frame.DataFrame
Contains, at a minimum a ‘Frame’, ‘Track_ID’, ‘X’, and ‘Y’ column.
- length : int
Desired length or number of frames to which to extend trajectories. Any trajectories shorter than the input length will have the extra space filled in with NaNs.
Returns: - xyft : dict of np.ndarray
Dictionary containing xy position data, frame data, and trajectory ID data. Contains the following keys: farray, frames data (length x particles) tarray, trajectory ID data (length x particles) xarray, x position data (length x particles) yarray, y position data (length x particles)
Examples
>>> data1 = {'Frame': [0, 1, 2, 3, 4, 2, 3, 4, 5, 6], ... 'Track_ID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2], ... 'X': [5, 6, 7, 8, 9, 1, 2, 3, 4, 5], ... 'Y': [6, 7, 8, 9, 10, 2, 3, 4, 5, 6]} >>> df = pd.DataFrame(data=data1) >>> length = max(df['Frame']) + 1 >>> xyft = msd.make_xyarray(df, length=length) {'farray': array([[0., 0.], [1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.], [6., 6.]]), 'tarray': array([[1., 2.], [1., 2.], [1., 2.], [1., 2.], [1., 2.], [1., 2.], [1., 2.]]), 'xarray': array([[ 5., nan], [ 6., nan], [ 7., 1.], [ 8., 2.], [ 9., 3.], [nan, 4.], 'yarray': [nan, 5.]]), array([[ 6., nan], [ 7., nan], [ 8., 2.], [ 9., 3.], [10., 4.], [nan, 5.], [nan, 6.]])}
-
diff_classifier.msd.
msd_calc
(track, length=10)[source]¶ Calculates mean squared displacement of input track.
Returns numpy array containing MSD data calculated from an individual track.
Parameters: - track : pandas.core.frame.DataFrame
Contains, at a minimum a ‘Frame’, ‘X’, and ‘Y’ column
Returns: - new_track : pandas.core.frame.DataFrame
Similar to input track. All missing frames of individual trajectories are filled in with NaNs, and two new columns, MSDs and Gauss are added: MSDs, calculated mean squared displacements using the formula MSD = <(xpos-x0)**2> Gauss, calculated Gaussianity
Examples
>>> data1 = {'Frame': [1, 2, 3, 4, 5], ... 'X': [5, 6, 7, 8, 9], ... 'Y': [6, 7, 8, 9, 10]} >>> df = pd.DataFrame(data=data1) >>> new_track = msd.msd_calc(df, 5)
>>> data1 = {'Frame': [1, 2, 3, 4, 5], ... 'X': [5, 6, 7, 8, 9], ... 'Y': [6, 7, 8, 9, 10]} >>> df = pd.DataFrame(data=data1) >>> new_track = msd.msd_calc(df)
-
diff_classifier.msd.
nth_diff
(dataframe, n=1, axis=0)[source]¶ Calculates the nth difference between vector elements
Returns a new vector of size N - n containing the nth difference between vector elements.
Parameters: - dataframe : pandas.core.series.Series of int or float
Input data on which differences are to be calculated.
- n : int
Function calculated xpos(i) - xpos(i - n) for all values in pandas series.
- axis : {0, 1}
Axis along which differences are to be calculated. Default is 0. If 0, input must be a pandas series. If 1, input must be a numpy array.
Returns: - diff : pandas.core.series.Series of int or float
Pandas series of size N - n, where N is the original size of dataframe.
Examples
>>> df = np.ones((5, 10)) >>> nth_diff(df) array([[0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0.]])
>>> df = np.ones((5, 10)) >>> nth_diff (df) array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
-
diff_classifier.msd.
plot_all_experiments
(experiments, bucket='ccurtis.data', folder='test', yrange=(0.1, 10), fps=100.02, xrange=(0.01, 1), upload=True, outfile='test.png', exponential=True)[source]¶ Plots precision-weighted averages of MSD datasets.
Plots pre-calculated precision-weighted averages of MSD datasets calculated from precision_averaging and stored in an AWS S3 bucket.
Parameters: - group : list of str
List of experiment names to plot. Each experiment must have an MSD and SEM file associated with it in s3.
- bucket : str
S3 bucket from which to download data.
- folder : str
Folder in s3 bucket from which to download data.
- yrange : list of float
Y range of plot
- xrange: list of float
X range of plot
- upload : bool
True to upload to S3
- outfile : str
Filename of output image
-
diff_classifier.msd.
precision_averaging
(group, geomean, geo_stder, weights, save=True, bucket='ccurtis.data', folder='test', experiment='test')[source]¶ Calculates precision-weighted averages of MSD datasets.
Parameters: - group : list of str
List of experiment names to average. Each element corresponds to a key in geo_stder and geomean.
- geomean : dict of numpy.ndarray
Each entry in dictionary corresponds to an MSD profiles, they key corresponding to an experiment name.
- geo_stder : dict of numpy.ndarray
Each entry in dictionary corresponds to the standard errors of an MSD profile, the key corresponding to an experiment name.
- weights : numpy.ndarray
Precision weights to be used in precision averaging.
Returns: - geo : numpy.ndarray
Precision-weighted averaged MSDs from experiments specified in group
- geo_stder : numpy.ndarray
Precision-weighted averaged SEMs from experiments specified in group
-
diff_classifier.msd.
precision_weight
(group, geo_stder)[source]¶ Calculates precision-based weights from input standard error data
Calculates precision weights to be used in precision-averaged MSD calculations.
Parameters: - group : list of str
List of experiment names to average. Each element corresponds to a key in geo_stder and geomean.
- geo_stder : dict of numpy.ndarray
Each entry in dictionary corresponds to the standard errors of an MSD profile, the key corresponding to an experiment name.
Returns: - weights: numpy.ndarray
Precision weights to be used in precision averaging.
- w_holder : numpy.ndarray
Precision values of each video at each time point.
-
diff_classifier.msd.
random_traj_dataset
(nframes=100, nparts=30, seed=1, fsize=(0, 512), ndist=(1, 2))[source]¶ Creates a random population of random walks.
Parameters: - nframes : int
Number of frames for each random trajectory.
- nparts : int
Number of particles in trajectory dataset.
- seed : int
Seed for pseudo-random number generator for reproducability.
- fsize : tuple of int or float
Scope of points over which particles may start at.
- ndist : tuple of int or float
Parameters to generate normal distribution, mu and sigma.
Returns: - dataf : pandas.core.frame.DataFrame
Trajectory data containing a ‘Frame’, ‘Track_ID’, ‘X’, and ‘Y’ column.
-
diff_classifier.msd.
random_walk
(nsteps=100, seed=1, start=(0, 0))[source]¶ Creates 2d random walk trajectory.
Parameters: - nsteps : int
Number of steps for trajectory to move.
- seed : int
Seed for pseudo-random number generator for reproducability.
- start : tuple of int or float
Starting xy coordinates at which the random walk begins.
Returns: - x : numpy.ndarray
Array of x coordinates of random walk.
- y : numpy.ndarray
Array of y coordinates of random walk.