diff_classifier.knotlets
¶
diff_classifier.knotlets
¶
Test functions to submit tracking jobs to AWS Batch with Cloudknot
-
diff_classifier.knotlets.
assemble_msds
(prefix, remote_folder, bucket='nancelab.publicfiles', ires=(512, 512), frames=651, rows=4, cols=4)[source]¶ Calculates MSDs and features from input trajectory files
A function based on msd.all_msds2 and features.calculate_features, creates msd and feature csv files from input trajectory files and uploads to S3.
- prefix : string
- Prefix (everything except file extension and folder name) of image file to be tracked. Must be available on S3.
- remote_folder : string
- Folder name where file is contained on S3 in the bucket specified by ‘bucket’.
- bucket : string
- S3 bucket where file is contained.
- ires : tuple of int
- Resolution of split images. Really just a sanity check to make sure you correctly splitting.
- frames : int
- Number of frames in input videos.
- rows : int
- Number of rows to split image into.
- cols : int
- Number of columns to split image into.
-
diff_classifier.knotlets.
split
(prefix, remote_folder, bucket='nancelab.publicfiles', rows=4, cols=4, ores=(2048, 2048), ires=(512, 512))[source]¶ Splits input image file into smaller images.
A function based on imagej.partition_im that download images from an S3 bucket, splits it into smaller images, and uploads these to S3.
Parameters: - prefix : string
Prefix (everything except file extension and folder name) of image file to be tracked. Must be available on S3.
- remote_folder : string
Folder name where file is contained on S3 in the bucket specified by ‘bucket’.
- bucket : string
S3 bucket where file is contained.
- rows : int
Number of rows to split image into.
- cols : int
Number of columns to split image into.
- ores : tuple of int
Original resolution of input image.
- ires : tuple of int
Resolution of split images. Really just a sanity check to make sure you correctly splitting.
-
diff_classifier.knotlets.
split_track_msds
(prefix, remote_folder, bucket='nancelab.publicfiles', rows=4, cols=4, ores=(2048, 2048), ires=(512, 512), to_split=False, regress_f='regress.obj', frames=651, tparams={'do_median_filtering': False, 'gap_closing_max_distance': 10.0, 'linking_max_distance': 6.0, 'max_frame_gap': 3, 'median_intensity': 300.0, 'quality': 15.0, 'radius': 3.0, 'snr': 0.0, 'threshold': 0.0, 'track_duration': 20.0, 'xdims': (0, 511), 'ydims': (1, 511)})[source]¶ Splits images, track particles, and calculates MSDs
A composite function designed to work with Cloudknot to split images, track particles, and calculate MSDs.
Parameters: - prefix : string
Prefix (everything except file extension and folder name) of image file to be tracked. Must be available on S3.
- remote_folder : string
Folder name where file is contained on S3 in the bucket specified by ‘bucket’.
- bucket : string
S3 bucket where file is contained.
- rows : int
Number of rows to split image into.
- cols : int
Number of columns to split image into.
- ores : tuple of int
Original resolution of input image.
- ires : tuple of int
Resolution of split images. Really just a sanity check to make sure you correctly splitting.
- to_split : bool
If True, will perform image splitting.
- regress_f : string
Name of regress object used to predict quality parameter.
- frames : int
Number of frames in input videos.
- tparams : dict
Dictionary containing tracking parameters to Trackmate analysis.
-
diff_classifier.knotlets.
tracking
(subprefix, remote_folder, bucket='nancelab.publicfiles', regress_f='regress.obj', rows=4, cols=4, ires=(512, 512), tparams={'do_median_filtering': False, 'gap_closing_max_distance': 10.0, 'linking_max_distance': 6.0, 'max_frame_gap': 3, 'median_intensity': 300.0, 'quality': 15.0, 'radius': 3.0, 'snr': 0.0, 'threshold': 0.0, 'track_duration': 20.0, 'xdims': (0, 511), 'ydims': (1, 511)})[source]¶ Tracks particles in input image using Trackmate.
A function based on imagej.track that downloads the image from S3, tracks particles using Trackmate, and uploads the resulting trajectory file to S3.
Parameters: - subprefix : string
Prefix (everything except file extension and folder name) of image file to be tracked. Must be available on S3.
- remote_folder : string
Folder name where file is contained on S3 in the bucket specified by ‘bucket’.
- bucket : string
S3 bucket where file is contained.
- regress_f : string
Name of regress object used to predict quality parameter.
- rows : int
Number of rows to split image into.
- cols : int
Number of columns to split image into.
- ires : tuple of int
Resolution of split images. Really just a sanity check to make sure you correctly splitting.
- tparams : dict
Dictionary containing tracking parameters to Trackmate analysis.