diff_classifier.features
¶
diff_classifier.features
¶
Functions to calculate trajectory features from input trajectory data
This module provides functions to calculate trajectory features based off the ImageJ plugin TrajClassifer by Thorsten Wagner. See details at https://imagej.net/TraJClassifier.
-
diff_classifier.features.
alpha_calc
(track)[source]¶ Calculates alpha, the exponential fit parameter for MSD data
Parameters: - track : pandas.core.frame.DataFrame
At a minimum, must contain a Frames and a MSDs column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
Returns: - alph : numpy.float64
The anomalous exponent derived by fitting MSD values to the function, <rad**2(n)> = 4*dcoef*(n*delt)**alph
- dcoef : numpy.float64
The fitted diffusion coefficient derived by fitting MSD values to the function above.
Examples
>>> frames = 5 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> alpha_calc(dframe) (2.0000000000000004, 0.4999999999999999)
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> alpha_calc(dframe) (0.023690002018364065, 0.5144436515510022)
-
diff_classifier.features.
aspectratio
(track)[source]¶ Calculates the aspect ratio of the rectangle containing the input track.
Parameters: - track : pandas.core.frame.DataFrame
At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
Returns: - aspratio : numpy.float64
aspect ratio of the trajectory. Always >= 1.
- elong : numpy.float64
elongation of the trajectory. A transformation of the aspect ratio given by 1 - aspratio**-1.
Examples
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> aspectratio(dframe) (5732146505273195.0, 0.99999999999999978)
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames))+3, ... 'Y': np.cos(np.linspace(1, frames, frames))+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> aspectratio(dframe) (1.0997501702946164, 0.090702573174318291)
-
diff_classifier.features.
asymmetry
(track)[source]¶ Calculates the asymmetry of the trajectory.
Parameters: - track : pandas DataFrame
At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
Returns: - eig1 : numpy.float64
Dominant eigenvalue of the gyration tensor.
- eig2 : numpy.float64
Secondary eigenvalue of the gyration tensor.
- asym1 : numpy.float64
asymmetry of the input track. Equal to 0 for circularly symmetric tracks, and 1 for linear tracks.
- asym2 : numpy.float64
alternate definition of asymmetry. Equal to 1 for circularly symmetric tracks, and 0 for linear tracks.
- asym3 : numpy.float64
alternate definition of asymmetry.
Examples
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> asymmetry(dframe) (16.5, 0.0, 1.0, 0.0, 0.69314718055994529)
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> asymmetry(dframe) (0.53232560128104522, 0.42766829138901619, 0.046430119259539708, 0.80339606128247354, 0.0059602683290953052)
-
diff_classifier.features.
boundedness
(track, framerate=1)[source]¶ Calculates the boundedness, fractal dimension, and trappedness of the input track.
Parameters: - track : pandas.core.frame.DataFrame
At a minimum, must contain a Frames and a MSDs column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
- framerate : framrate of the video being analyzed. Actually cancels out. So
why did I include this. Default is 1.
Returns: - bound : float
Boundedness of the input track. Quantifies how much a particle with diffusion coefficient dcoef is restricted by a circular confinement of radius rad when it diffuses for a time duration N*delt. Defined as bound = dcoef*N*delt/rad**2. For this case, dcoef is the short time diffusion coefficient (after 2 frames), and rad is half the maximum distance between any two positions.
- fractd : float
The fractal path dimension defined as fractd = log(N)/log(N*data1*l**-1) where netdisp is the total length (sum over all steplengths), N is the number of steps, and data1 is the largest distance between any two positions.
- probf : float
The probability that a particle with diffusion coefficient dcoef and traced for a period of time N*delt is trapped in region r0. Given by pt = 1 - exp(0.2048 - 0.25117*(dcoef*N*delt/r0**2)). For this case, dcoef is the short time diffusion coefficient, and r0 is half the maximum distance between any two positions.
Examples
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> boundedness(dframe) (1.0, 1.0000000000000002, 0.045311337970735499)
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> boundedness(dframe) (0.96037058689895005, 2.9989749477908401, 0.03576118370932313)
-
diff_classifier.features.
calculate_features
(dframe, framerate=1, frame=(10, 100))[source]¶ Calculates multiple features from input MSD dataset and stores in pandas dataframe.
Parameters: - dframe : pandas.core.frame.DataFrame
Output from msd.all_msds2. Must have at a minimum the following columns: Track_ID, Frame, X, Y, and MSDs.
- framerate : int or float
Framerate of the input videos from which trajectories were calculated. Required for accurate calculation of some features. Default is 1. Possibly not required. Ignore if performing all calcuations without units.
- frame : int
Frame at which to calculate Deff
Returns: - datai: pandas.core.frame.DataFrame
Contains a row for each trajectory in dframe. Holds the following features of each trajetory: Track_ID, alpha, D_fit, kurtosis, asymmetry1, asymmetry2, asymmetry3, aspect ratio (AR), elongation, boundedness, fractal dimension (fractal_dim), trappedness, efficiency, straightness, MSD ratio, frames, X, and Y.
Examples
See example outputs from individual feature functions.
-
diff_classifier.features.
efficiency
(track)[source]¶ Calculates the efficiency and straitness of the input track
Parameters: - track : pandas.core.frame.DataFrame
At a minimum, must contain a Frames and a MSDs column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
Returns: - eff : float
Efficiency of the input track. Relates the sum of squared step lengths. Based on Helmuth et al. (2007) and defined as: E = |xpos(N-1)-xpos(0)|**2/SUM(|xpos(i) - xpos(i-1)|**2
- strait : float
Relates the net displacement netdisp to the sum of step lengths and is defined as: S = |xpos(N-1)-xpos(0)|/SUM(|xpos(i) - xpos(i-1)|
Examples
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> ft.efficiency(dframe) (9.0, 0.9999999999999999)
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames))+3, ... 'Y': np.cos(np.linspace(1, frames, frames))+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> ft.efficiency(dframe) (0.46192924086141945, 0.22655125514290225)
-
diff_classifier.features.
feature_violin
(tgroups, feature='boundedness', labels=['sample 1', 'sample 2', 'sample 3'], points=40, ylim=[0, 1], nticks=11)[source]¶ Plots violin plots of features in comparison groups
Parameters: - tgroups : dict of pandas.core.frames.DataFrame
Dictionary containing pandas dataframes containing trajectory features of subgroups to be plotted
- feature : string
Feature to be compared
- labels : list of strings
Labels of subgroups to be plotted.
- points : int
Determines resolution of violin plot
- ylim : list of int
Y range of output plot
-
diff_classifier.features.
gyration_tensor
(track)[source]¶ Calculates the eigenvalues and eigenvectors of the gyration tensor of the input trajectory.
Parameters: - track : pandas DataFrame
At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
Returns: - eig1 : numpy.float64
Dominant eigenvalue of the gyration tensor.
- eig2 : numpy.float64
Secondary eigenvalue of the gyration tensor.
- eigv1 : numpy.ndarray
Dominant eigenvector of the gyration tensor.
- eigv2 : numpy.ndarray
Secondary eigenvector of the gyration tensor.
Examples
>>> frames = 5 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> gyration_tensor(dframe) (4.0, 4.4408920985006262e-16, array([ 0.70710678, -0.70710678]), array([ 0.70710678, 0.70710678]))
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> gyration_tensor(dframe) (0.53232560128104522, 0.42766829138901619, array([ 0.6020119 , -0.79848711]), array([-0.79848711, -0.6020119 ]))
-
diff_classifier.features.
kurtosis
(track)[source]¶ Calculates the kurtosis of input track.
Parameters: - track : pandas.core.frame.DataFrame
At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
Returns: - kurt : numpy.float64
Kurtosis of the input track. Calculation based on projected 2D positions on the dominant eigenvector of the radius of gyration tensor.
Examples
>>> frames = 5 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> kurtosis(dframe) 2.5147928994082829
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames)+3), ... 'Y': np.cos(np.linspace(1, frames, frames)+3)} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> kurtosis(dframe) 1.8515139698652476
-
diff_classifier.features.
minboundrect
(track)[source]¶ Calculates the minimum bounding rectangle of an input trajectory.
Parameters: - dframe : pandas.core.frame.DataFrame
At a minimum, must contain an X and Y column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
Returns: - rot_angle : numpy.float64
Angle of rotation of the bounding box.
- area : numpy.float64
Area of the bounding box.
- width : numpy.float64
Width of the bounding box.
- height : numpy.float64
Height of the bounding box.
- center_point : numpy.ndarray
Center point of the bounding box.
- corner_pts : numpy.ndarray
Corner points of the bounding box.
Notes
Based off of code from the following repo: https://github.com/dbworth/minimum-area-bounding-rectangle/blob/master/ python/min_bounding_rect.py
Examples
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> minboundrect(dframe) (-2.3561944901923448, 2.8261664256307952e-14, 12.727922061357855, 2.2204460492503131e-15, array([ 10.5, 8.5]), array([[ 6., 4.], [ 15., 13.], [ 15., 13.], [ 6., 4.]]))
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames))+3, ... 'Y': np.cos(np.linspace(1, frames, frames))+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> minboundrect(dframe) (0.78318530717958657, 3.6189901131223992, 1.9949899732081091, 1.8140392491811692, array([ 3.02076903, 2.97913884]), array([[ 4.3676025 , 3.04013439], [ 2.95381341, 1.63258851], [ 1.67393557, 2.9181433 ], [ 3.08772466, 4.32568917]]))
-
diff_classifier.features.
msd_ratio
(track, fram1=3, fram2=100)[source]¶ Calculates the MSD ratio of the input track at the specified frames.
Parameters: - track : pandas.core.frame.DataFrame
At a minimum, must contain a Frames and a MSDs column. The function msd_calc can be used to generate the correctly formatted pd dataframe.
- fram1 : int
First frame at which to calculate the MSD ratio.
- fram2 : int
Last frame at which to calculate the MSD ratio.
Returns: - ratio: numpy.float64
MSD ratio as defined by [MSD(fram1)/MSD(fram2)] - [fram1/fram2] where fram1 < fram2. For Brownian motion, it is 0; for restricted motion it is < 0. For directed motion it is > 0.
Examples
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.linspace(1, frames, frames)+5, ... 'Y': np.linspace(1, frames, frames)+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> ft.msd_ratio(dframe, 1, 9) -0.18765432098765433
>>> frames = 10 >>> data1 = {'Frame': np.linspace(1, frames, frames), ... 'X': np.sin(np.linspace(1, frames, frames))+3, ... 'Y': np.cos(np.linspace(1, frames, frames))+3} >>> dframe = pd.DataFrame(data=data1) >>> dframe['MSDs'], dframe['Gauss'] = msd_calc(dframe) >>> ft.msd_ratio(dframe, 1, 9) 0.04053708075268797
-
diff_classifier.features.
unmask_track
(track)[source]¶ Removes empty frames from inpute trajectory datset.
Parameters: - track : pandas.core.frame.DataFrame
At a minimum, must contain a Frame, Track_ID, X, Y, MSDs, and Gauss column.
Returns: - comp_track : pandas.core.frame.DataFrame
Similar to track, but has all masked components removed.